Natural diet of coral-excavating sponges consists mainly of dissolved organic carbon (DOC)

PLoS One. 2014 Feb 25;9(2):e90152. doi: 10.1371/journal.pone.0090152. eCollection 2014.

Abstract

Coral-excavating sponges are the most important bioeroders on Caribbean reefs and increase in abundance throughout the region. This increase is commonly attributed to a concomitant increase in food availability due to eutrophication and pollution. We therefore investigated the uptake of organic matter by the two coral-excavating sponges Siphonodictyon sp. and Cliona delitrix and tested whether they are capable of consuming dissolved organic carbon (DOC) as part of their diet. A device for simultaneous sampling of water inhaled and exhaled by the sponges was used to directly measure the removal of DOC and bacteria in situ. During a single passage through their filtration system 14% and 13% respectively of the total organic carbon (TOC) in the inhaled water was removed by the sponges. 82% (Siphonodictyon sp.; mean ± SD; 13 ± 17 μmol L(-1)) and 76% (C. delitrix; 10 ± 12 μmol L(-1)) of the carbon removed was taken up in form of DOC, whereas the remainder was taken up in the form of particulate organic carbon (POC; bacteria and phytoplankton) despite high bacteria retention efficiency (72 ± 15% and 87 ± 10%). Siphonodictyon sp. and C. delitrix removed DOC at a rate of 461 ± 773 and 354 ± 562 μmol C h(-1) respectively. Bacteria removal was 1.8 ± 0.9 × 10(10) and 1.7 ± 0.6 × 10(10) cells h(-1), which equals a carbon uptake of 46.0 ± 21.2 and 42.5 ± 14.0 μmol C h(-1) respectively. Therefore, DOC represents 83 and 81% of the TOC taken up by Siphonodictyon sp. and C. delitrix per hour. These findings suggest that similar to various reef sponges coral-excavating sponges also mainly rely on DOC to meet their carbon demand. We hypothesize that excavating sponges may also benefit from an increasing production of more labile algal-derived DOC (as compared to coral-derived DOC) on reefs as a result of the ongoing coral-algal phase shift.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anthozoa*
  • Bacteria / metabolism
  • Biological Transport
  • Carbon / analysis*
  • Carbon / chemistry*
  • Carbon / metabolism
  • Diet*
  • Organic Chemicals / analysis*
  • Organic Chemicals / chemistry*
  • Organic Chemicals / metabolism
  • Porifera* / metabolism
  • Porifera* / microbiology

Substances

  • Organic Chemicals
  • Carbon

Grants and funding

The research leading to these results has received funding from the European Union Seventh Framework Programme (P7/2007-2013) under grant agreement no 244161 (Future of Reefs in a Changing Environment) and the Innovational Research Incentives Scheme of the Netherlands Organization for Scientific Research (NWO-VENI; 863.10.009; pers. grant to JMdG). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.