VelC positively controls sexual development in Aspergillus nidulans

PLoS One. 2014 Feb 28;9(2):e89883. doi: 10.1371/journal.pone.0089883. eCollection 2014.

Abstract

Fungal development and secondary metabolism is intimately associated via activities of the fungi-specific velvet family proteins including VeA, VosA, VelB and VelC. Among these, VelC has not been characterized in Aspergillus nidulans. In this study, we characterize the role of VelC in asexual and sexual development in A. nidulans. The velC mRNA specifically accumulates during the early phase of sexual development. The deletion of velC leads to increased number of conidia and reduced production of sexual fruiting bodies (cleistothecia). In the velC deletion mutant, mRNA levels of the brlA, abaA, wetA and vosA genes that control sequential activation of asexual sporulation increase. Overexpression of velC causes increased formation of cleistothecia. These results suggest that VelC functions as a positive regulator of sexual development. VelC is one of the five proteins that physically interact with VosA in yeast two-hybrid and GST pull down analyses. The ΔvelC ΔvosA double mutant produced fewer cleistothecia and behaved similar to the ΔvosA mutant, suggesting that VosA is epistatic to VelC in sexual development, and that VelC might mediate control of sex through interacting with VosA at specific life stages for sexual fruiting.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aspergillus nidulans / genetics
  • Aspergillus nidulans / metabolism*
  • Fungal Proteins / genetics
  • Fungal Proteins / metabolism*
  • Gene Expression Regulation, Fungal / genetics
  • Gene Expression Regulation, Fungal / physiology

Substances

  • Fungal Proteins

Grants and funding

The work at UW-Madison was supported by USDA CSREES Hatch (WIS01195) and the Intelligent Synthetic Biology Center of Global Frontier Project (2011-0031955) funded by the Ministry of Education, Science and Technology grants to JHY. The work at WU (KHH) was supported by Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education (NRF 2012R1A1A4A01012864). The work at KAIST (SCK) was supported by the Intelligent Synthetic Biology Center of Global Frontier Project (2011-0031955) funded by the Ministry of Education, Science and Technology, Republic of Korea to SCK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.