Exon first nucleotide mutations in splicing: evaluation of in silico prediction tools

PLoS One. 2014 Feb 21;9(2):e89570. doi: 10.1371/journal.pone.0089570. eCollection 2014.

Abstract

Mutations in the first nucleotide of exons (E(+1)) mostly affect pre-mRNA splicing when found in AG-dependent 3' splice sites, whereas AG-independent splice sites are more resistant. The AG-dependency, however, may be difficult to assess just from primary sequence data as it depends on the quality of the polypyrimidine tract. For this reason, in silico prediction tools are commonly used to score 3' splice sites. In this study, we have assessed the ability of sequence features and in silico prediction tools to discriminate between the splicing-affecting and non-affecting E(+1) variants. For this purpose, we newly tested 16 substitutions in vitro and derived other variants from literature. Surprisingly, we found that in the presence of the substituting nucleotide, the quality of the polypyrimidine tract alone was not conclusive about its splicing fate. Rather, it was the identity of the substituting nucleotide that markedly influenced it. Among the computational tools tested, the best performance was achieved using the Maximum Entropy Model and Position-Specific Scoring Matrix. As a result of this study, we have now established preliminary discriminative cut-off values showing sensitivity up to 95% and specificity up to 90%. This is expected to improve our ability to detect splicing-affecting variants in a clinical genetic setting.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agammaglobulinaemia Tyrosine Kinase
  • Agammaglobulinemia / genetics
  • Computer Simulation
  • Exons
  • Genetic Diseases, X-Linked / genetics
  • HeLa Cells
  • Humans
  • Models, Genetic
  • Molecular Sequence Data
  • Point Mutation*
  • Protein-Tyrosine Kinases / genetics*
  • RNA Splice Sites*
  • RNA Splicing
  • Sequence Analysis, DNA
  • Software*

Substances

  • RNA Splice Sites
  • Protein-Tyrosine Kinases
  • Agammaglobulinaemia Tyrosine Kinase

Supplementary concepts

  • Bruton type agammaglobulinemia

Grants and funding

This work was supported by an internal grant of Centre for Cardiovascular Surgery and Transplantation, number 201209; and further by the project “CEITEC - Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068) and SuPReMMe (CZ.1.07/2.3.00/20.0045). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.