Irradiation effects of high-energy proton beams on MoS2 field effect transistors

ACS Nano. 2014 Mar 25;8(3):2774-81. doi: 10.1021/nn4064924. Epub 2014 Feb 25.

Abstract

We investigated the effect of irradiation on molybdenum disulfide (MoS2) field effect transistors with 10 MeV high-energy proton beams. The electrical characteristics of the devices were measured before and after proton irradiation with fluence conditions of 10(12), 10(13), and 10(14) cm(-2). For a low proton beam fluence condition of 10(12) cm(-2), the electrical properties of the devices were nearly unchanged in response to proton irradiation. In contrast, for proton beam fluence conditions of 10(13) or 10(14) cm(-2), the current level and conductance of the devices significantly decreased following proton irradiation. The electrical changes originated from proton-irradiation-induced traps, including positive oxide-charge traps in the SiO2 layer and trap states at the interface between the MoS2 channel and the SiO2 layer. Our study will enhance the understanding of the influence of high-energy particles on MoS2-based nanoelectronic devices.

Publication types

  • Research Support, Non-U.S. Gov't