Detection of arsenic(III) through pulsed laser-induced desorption/ionization of gold nanoparticles on cellulose membranes

Anal Chem. 2014 Mar 18;86(6):3167-73. doi: 10.1021/ac500053e. Epub 2014 Feb 28.

Abstract

We have developed an assay based on gold nanoparticle-modified mixed cellulose ester membrane (Au NPs-MCEM) coupled with laser-induced desorption/ionization mass spectrometry (LDI-MS)-for the detection of arsenic(III) ions (arsenite, AsO2(-)) in aqueous solution. When the Au NPs reacted with lead ions (Pb(2+)) in alkaline solution (5 mM glycine-NaOH, pH 12), Au-Pb complexes, PbO, and Pb(OH) were formed immediately on the Au NP surfaces. The Pb species reacted rapidly with subsequently added AsO2(-) to form PbOAs2O3, (PbO)2As2O3, and/or (PbO)3As2O3 shells (2-5 nm) on the Au NPs' surfaces. As a result, significant observable aggregation of the Au NPs occurred in the solution. This Pb(2+)/Au NP probe allowed the detection of AsO2(-) at concentrations as low as 0.6 μM with high selectivity (at least 100-fold over other anions and metal ions). To further improve the sensitivity, we prepared Au NPs-MCEM for the LDI-MS-based detection of AsO2(-) ions. The intensity of the signal for the [Pb](+) ions in the mass spectra increased when the Au NPs-MCEM reacted with AsO2(-); in contrast, the intensity of the signal for [Au](+) ions decreased. Accordingly, the [Pb](+)/[Au](+) peak ratio increased upon increasing the AsO2(-) concentration over the range from 10 nM to 10 μM. The limit of detection at a signal-to-noise ratio of 3 was 2.5 nM, far below the action level of As (133 nM, ca. 10 ppb) permitted by the US EPA for drinking water. Relative to other nanoparticle-based arsenic sensors, this approach is rapid, specific, and sensitive; in addition, it can be applied to the detection of AsO2(-) in natural water samples (in this case, streamwater, lake water, tap water, groundwater, and mineral water).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arsenic / analysis*
  • Cellulose / chemistry*
  • Gold / chemistry*
  • Membranes, Artificial*
  • Microscopy, Electron, Transmission
  • Nanoparticles*

Substances

  • Membranes, Artificial
  • Gold
  • Cellulose
  • Arsenic