New model for gastroenteropancreatic large-cell neuroendocrine carcinoma: establishment of two clinically relevant cell lines

PLoS One. 2014 Feb 14;9(2):e88713. doi: 10.1371/journal.pone.0088713. eCollection 2014.

Abstract

Recently, a novel WHO-classification has been introduced that divided gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) according to their proliferation index into G1- or G2-neuroendocrine tumors (NET) and poorly differentiated small-cell or large-cell G3-neuroendocrine carcinomas (NEC). Our knowledge on primary NECs of the GEP-system is limited due to the rarity of these tumors and chemotherapeutic concepts of highly aggressive NEC do not provide convincing results. The aim of this study was to establish a reliable cell line model for NEC that could be helpful in identifying novel druggable molecular targets. Cell lines were established from liver (NEC-DUE1) or lymph node metastases (NEC-DUE2) from large cell NECs of the gastroesophageal junction and the large intestine, respectively. Morphological characteristics and expression of neuroendocrine markers were extensively analyzed. Chromosomal aberrations were mapped by array comparative genomic hybridization and DNA profiling was analyzed by DNA fingerprinting. In vitro and in vivo tumorigenicity was evaluated and the sensitivity against chemotherapeutic agents assessed. Both cell lines exhibited typical morphological and molecular features of large cell NEC. In vitro and in vivo experiments demonstrated that both cell lines retained their malignant properties. Whereas NEC-DUE1 and -DUE2 were resistant to chemotherapeutic drugs such as cisplatin, etoposide and oxaliplatin, a high sensitivity to 5-fluorouracil was observed for the NEC-DUE1 cell line. Taken together, we established and characterized the first GEP large-cell NEC cell lines that might serve as a helpful tool not only to understand the biology of these tumors, but also to establish novel targeted therapies in a preclinical setup.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use
  • Biomarkers, Tumor / metabolism
  • Carcinogenesis / drug effects
  • Carcinogenesis / pathology
  • Carcinoma, Large Cell / pathology*
  • Carcinoma, Large Cell / ultrastructure
  • Carcinoma, Neuroendocrine / pathology*
  • Carcinoma, Neuroendocrine / ultrastructure
  • Cell Count
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Cell Shape / drug effects
  • Cytogenetic Analysis
  • Digestive System Neoplasms / pathology*
  • Humans
  • Immunohistochemistry
  • Male
  • Models, Biological*
  • Receptors, Somatostatin / metabolism

Substances

  • Antineoplastic Agents
  • Biomarkers, Tumor
  • Receptors, Somatostatin

Grants and funding

This work was supported by grants from the Forschungskommission of the Medical Faculty, University Duesseldorf (41/09 to AK) and by the Deutsche Forschungsgemeinschaft (KR 3496/2-1 to AK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.