How river rocks round: resolving the shape-size paradox

PLoS One. 2014 Feb 12;9(2):e88657. doi: 10.1371/journal.pone.0088657. eCollection 2014.

Abstract

River-bed sediments display two universal downstream trends: fining, in which particle size decreases; and rounding, where pebble shapes evolve toward ellipsoids. Rounding is known to result from transport-induced abrasion; however many researchers argue that the contribution of abrasion to downstream fining is negligible. This presents a paradox: downstream shape change indicates substantial abrasion, while size change apparently rules it out. Here we use laboratory experiments and numerical modeling to show quantitatively that pebble abrasion is a curvature-driven flow problem. As a consequence, abrasion occurs in two well-separated phases: first, pebble edges rapidly round without any change in axis dimensions until the shape becomes entirely convex; and second, axis dimensions are then slowly reduced while the particle remains convex. Explicit study of pebble shape evolution helps resolve the shape-size paradox by reconciling discrepancies between laboratory and field studies, and enhances our ability to decipher the transport history of a river rock.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Geologic Sediments*
  • Geology / methods*
  • Imaging, Three-Dimensional
  • Minerals / chemistry*
  • Models, Theoretical
  • Normal Distribution
  • Probability
  • Rivers

Substances

  • Minerals

Grants and funding

The authors gratefully acknowledge support for this work through OTKA grant T104601 to GD and AS, and NSF agreement EAR-1224943 to DJJ.The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.