Self-healing networks: redundancy and structure

PLoS One. 2014 Feb 12;9(2):e87986. doi: 10.1371/journal.pone.0087986. eCollection 2014.

Abstract

We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of the system. We then analyze the effect of the level of redundancy on the resilience to multiple failures; in particular, we measure the fraction of nodes still served for increasing levels of network damages. Finally, we study the effects of redundancy under different connectivity patterns-from planar grids, to small-world, up to scale-free networks-on healing performances. Small-world topologies show that introducing some long-range connections in planar grids greatly enhances the resilience to multiple failures with performances comparable to the case of the most resilient (and least realistic) scale-free structures. Obvious applications of self-healing are in the important field of infrastructural networks like gas, power, water, oil distribution systems.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Computer Communication Networks
  • Computer Simulation*
  • Electric Power Supplies
  • Water Supply

Grants and funding

Funding for this work was provided by the authors' institutions (London Institute of Mathematical Sciences, IMT Lucca Institute for Advanced Studies, CNR-ISC), US grant HDTRA1-11-1-0048, CNR-PNR National Project “Crisis-Lab,” and EU FET project MULTIPLEX nr.317532. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.