TRIP-1 via AKT modulation drives lung fibroblast/myofibroblast trans-differentiation

Respir Res. 2014 Feb 15;15(1):19. doi: 10.1186/1465-9921-15-19.

Abstract

Background: Myofibroblasts are the critical effector cells in the pathogenesis of pulmonary fibrosis which carries a high degree of morbidity and mortality. We have previously identified Type II TGFβ receptor interacting protein 1 (TRIP-1), through proteomic analysis, as a key regulator of collagen contraction in primary human lung fibroblasts--a functional characteristic of myofibroblasts, and the last, but critical step in the process of fibrosis. However, whether or not TRIP-1 modulates fibroblast trans-differentiation to myofibroblasts is not known.

Methods: TRIP-1 expression was altered in primary human lung fibroblasts by siRNA and plasmid transfection. Transfected fibroblasts were then analyzed for myofibroblast features and function such as α-SMA expression, collagen contraction ability, and resistance to apoptosis.

Results: The down-regulation of TRIP-1 expression in primary human lung fibroblasts induces α-SMA expression and enhances resistance to apoptosis and collagen contraction ability. In contrast, TRIP-1 over-expression inhibits α-SMA expression. Remarkably, the effects of the loss of TRIP-1 are not abrogated by blockage of TGFβ ligand activation of the Smad3 pathway or by Smad3 knockdown. Rather, a TRIP-1 mediated enhancement of AKT phosphorylation is the implicated pathway. In TRIP-1 knockdown fibroblasts, AKT inhibition prevents α-SMA induction, and transfection with a constitutively active AKT construct drives collagen contraction and decreases apoptosis.

Conclusions: TRIP-1 regulates fibroblast acquisition of phenotype and function associated with myofibroblasts. The importance of this finding is it suggests TRIP-1 expression could be a potential target in therapeutic strategy aimed against pathological fibrosis.

MeSH terms

  • Animals
  • Cell Transdifferentiation / physiology*
  • Cells, Cultured
  • Eukaryotic Initiation Factor-3 / physiology*
  • Fibroblasts / physiology*
  • Humans
  • Lung / cytology
  • Lung / physiology*
  • Myofibroblasts / physiology*
  • Proto-Oncogene Proteins c-akt / physiology*
  • Rats

Substances

  • Eukaryotic Initiation Factor-3
  • EIF3I protein, human
  • Proto-Oncogene Proteins c-akt