Endothelial barrier protection by local anesthetics: ropivacaine and lidocaine block tumor necrosis factor-α-induced endothelial cell Src activation

Anesthesiology. 2014 Jun;120(6):1414-28. doi: 10.1097/ALN.0000000000000174.

Abstract

Background: Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase-Akt-nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability.

Methods: Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed.

Results: Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10 M for ropivacaine; IC50 = 5.864 × 10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10 M for ropivacaine; IC50 = 6.377 × 10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated.

Conclusions: Ropivacaine and lidocaine effectively blocked inflammatory TNFα signaling in endothelial cells by attenuating p85 recruitment to TNF-receptor-1. The resultant decrease in Akt, endothelial nitric oxide synthase, and Src phosphorylation reduced neutrophil adhesion and endothelial hyperpermeability. This novel anti-inflammatory "side-effect" of ropivacaine and lidocaine may provide therapeutic benefit in acute inflammatory disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amides / pharmacology*
  • Anesthetics, Local / pharmacology*
  • Cells, Cultured
  • Endothelium, Vascular / cytology
  • Endothelium, Vascular / drug effects*
  • Endothelium, Vascular / enzymology
  • Enzyme Activation / drug effects
  • Enzyme Activation / physiology
  • Humans
  • Lidocaine / pharmacology*
  • Lung / drug effects
  • Lung / enzymology
  • Microcirculation / drug effects
  • Microcirculation / physiology
  • Ropivacaine
  • Tumor Necrosis Factor-alpha / administration & dosage
  • Tumor Necrosis Factor-alpha / antagonists & inhibitors*
  • src-Family Kinases / metabolism*
  • src-Family Kinases / physiology

Substances

  • Amides
  • Anesthetics, Local
  • Tumor Necrosis Factor-alpha
  • Ropivacaine
  • Lidocaine
  • src-Family Kinases