Dispersal-mediated effect of microhabitat availability and density dependence determine population dynamics of a forest floor web spider

J Anim Ecol. 2014 Sep;83(5):1047-56. doi: 10.1111/1365-2656.12213. Epub 2014 Mar 24.

Abstract

Landscapes in nature can be viewed as a continuum of small total habitable area with high fragmentation to widely spreading habitats. The dispersal-mediated rescue effect predominates in the former landscapes, while classical density-dependent processes generally prevail in widely spread habitats. A similar principle should be applied to populations of organisms utilizing microhabitats in limited supply. To test this hypothesis, we examined the population dynamics of a web spider, Neriene brongersmai, in 16 populations with varying degrees of microhabitat availability, and we explored whether: (i) high microhabitat availability improves survival rate during density-independent movement, while the resultant high density reduces survival rate in a density-dependent manner; and (ii) temporal population stability increases with microhabitat availability at the population level. Furthermore, we conducted two types of field experiments to verify whether high microhabitat availability actually reduces mortality associated with web-site movement. Field observations revealed that demographic change in N. brongersmai populations was affected by three factors at different stages, namely the microhabitat limitation from the early to late juvenile stages, the density dependence from the late juvenile to adult stages and the food limitation from the adult to the next early juvenile stages. In addition, there was a tendency for a positive association between population stability and microhabitat availability at the population level. A small-scale experiment, where the frequency of spider web relocation was equalized artificially, revealed that high microhabitat availability elevated the survival rate during a movement event between web-sites. The larger spatiotemporal scale experiment also revealed an improved spider survival rate following treatment with high microhabitat availability, even though spider density was kept at a relatively low level. The population dynamics of N. brongersmai can be determined primarily by density-independent processes based on web-site fragmentation and density-dependent processes driven by interference competition. We conclude that depending on the amount of habitat resources, the relative importance of the two contrasting paradigms-equilibrium and non-equilibrium-appears to vary, even within a particular system.

Keywords: emergent property; generalist predator; habitat loss; landscape ecology; metapopulation.

MeSH terms

  • Animal Distribution*
  • Animals
  • Ecosystem*
  • Female
  • Forests
  • Japan
  • Life Cycle Stages*
  • Population Density
  • Population Dynamics
  • Predatory Behavior
  • Spiders / physiology*