Innate immune response adaptation in mice subjected to administration of DMBA and physical activity

Oncol Lett. 2014 Mar;7(3):886-890. doi: 10.3892/ol.2013.1774. Epub 2013 Dec 24.

Abstract

Although there is growing interest in studies that promote the benefits of exercise and the correlation between exercise and fighting cancer, previous studies have not been able to elucidate the underlying mechanisms. The aim of the present study was to investigate cytokine synthesis by peritoneal macrophages in the presence of mammary tumors and the effect of physical activity. Female BALB/c virgin mice (age, eight weeks) were obtained for the present study and divided into four groups: A no tumor/non-trained control group; a no tumor/trained group subjected to swim training; a tumor/non-trained group in which the mice received the carcinogenic drug, DMBA and a tumor/trained group in which the mice were subjected to DMBA and swim training protocols. Following the experimental period, immune cells were collected from the peritoneal fluid, placed in culture medium and stimulated with lipopolysaccharide. The presence of the cluster of differentiation-14 marker and expression of the interleukin (IL)-12 cytokine was assessed by flow cytometry and measured via an enzyme-linked immunosorbent assay. The following cytokines were also identified: Interferon-γ, IL-4, IL-10, IL-12, tumor necrosis factor-α and transforming growth factor-β. Physical activity increased the quantity of IL-12 producing macrophages, whereas the presence of a tumor decreased the quantity of macrophages expressing IL-12. Tumor induction, in the absence of swim training, reduced macrophage-profile 1 (M1) cytokine levels while increasing the presence of macrophage-profile 2 cytokines. Physical activity in mice with tumors resulted in reductions in tumor development and promoted immune system polarization towards an antitumor M1 response pattern profile.

Keywords: cancer; immune response; physical activity; tumor.