Improved algorithm for processing grating-based phase contrast interferometry image sets

Rev Sci Instrum. 2014 Jan;85(1):013704. doi: 10.1063/1.4861199.

Abstract

Grating-based X-ray and neutron interferometry tomography using phase-stepping methods generates large data sets. An improved algorithm is presented for solving for the parameters to calculate transmissions, differential phase contrast, and dark-field images. The method takes advantage of the vectorization inherent in high-level languages such as Mathematica and MATLAB and can solve a 16 × 1k × 1k data set in less than a second. In addition, the algorithm can function with partial data sets. This is demonstrated with processing of a 16-step grating data set with partial use of the original data chosen without any restriction. Also, we have calculated the reduced chi-square for the fit and notice the effect of grating support structural elements upon the differential phase contrast image and have explored expanded basis set representations to mitigate the impact.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Fourier Analysis
  • Image Processing, Computer-Assisted / methods*
  • Interferometry
  • Light