First MNKs degrading agents block phosphorylation of eIF4E, induce apoptosis, inhibit cell growth, migration and invasion in triple negative and Her2-overexpressing breast cancer cell lines

Oncotarget. 2014 Jan 30;5(2):530-43. doi: 10.18632/oncotarget.1528.

Abstract

Some retinoic acid metabolism blocking agents (RAMBAs) are known to exhibit a wide range of anticancer activities by mechanisms that are still not completely resolved. This study investigated the anticancer efficacy and mechanism(s) of novel RAMBA retinamides (RRs) in triple negative and Her-2 overexpressing breast cancer cells. Specifically, we examined the possibility that RRs affect the translational machinery in these breast cancer (BC) cells. Recent findings suggest that overexpression of eukaryotic translation initiation factor 4E (eIF4E) in breast cancers critically augments CAP-dependent mRNA translation and synthesis of proteins involved in cell growth, cell proliferation, invasion and apoptosis evasion. The oncogenic potential of eIF4E is strictly dependent on serine209 phosphorylation by upstream MAPK-interacting kinases (Mnks). Targeting Mnk/eIF4E pathway for blocking Mnk function and eIF4E phosphorylation is therefore a novel approach for treating BCs, particularly for Her2-positive and triple negative breast cancers that have no indications for endocrine therapy or effective treatment regimes. We report for the first time that the degradation of Mnk1 by RRs in BC cells blocks eIF4E phosphorylation and subsequently inhibits cell growth, colonization, invasion, and migration and induce apoptosis. Most importantly, the anticancer efficacy of RRs was mediated via degrading Mnk rather than inhibiting its kinase activity like Mnk inhibitors (cercosporamide and CGP57380). Furthermore, RRs potencies on peIF4E down-regulation and growth inhibition were superior to those of two clinically relevant retinoids and the Mnk inhibitors. Together our findings provide the first preclinical proof-of-concept of novel Mnk degrading agents for Mnk/eIF4E based therapeutic treatment of breast cancers.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis / drug effects
  • Cell Line, Tumor
  • Cell Movement / drug effects
  • Cell Proliferation / drug effects
  • Eukaryotic Initiation Factor-4E / genetics
  • Eukaryotic Initiation Factor-4E / metabolism*
  • Female
  • Humans
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Phosphorylation / drug effects
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Receptor, ErbB-2 / biosynthesis
  • Receptor, ErbB-2 / metabolism
  • Transfection
  • Tretinoin / analogs & derivatives
  • Tretinoin / pharmacology
  • Triple Negative Breast Neoplasms / drug therapy*
  • Triple Negative Breast Neoplasms / genetics
  • Triple Negative Breast Neoplasms / metabolism*
  • Triple Negative Breast Neoplasms / pathology

Substances

  • Eukaryotic Initiation Factor-4E
  • Intracellular Signaling Peptides and Proteins
  • Tretinoin
  • retinamide
  • MKNK1 protein, human
  • ERBB2 protein, human
  • Receptor, ErbB-2
  • Protein Serine-Threonine Kinases