Prostate apoptosis response-4 mediates TGF-β-induced epithelial-to-mesenchymal transition

Cell Death Dis. 2014 Feb 6;5(2):e1044. doi: 10.1038/cddis.2014.7.

Abstract

A growing body of evidence supports that the epithelial-to-mesenchymal transition (EMT), which occurs during cancer development and progression, has a crucial role in metastasis by enhancing the motility of tumor cells. Transforming growth factor-β (TGF-β) is known to induce EMT in a number of cancer cell types; however, the mechanism underlying this transition process is not fully understood. In this study we have demonstrated that TGF-β upregulates the expression of tumor suppressor protein Par-4 (prostate apoptosis response-4) concomitant with the induction of EMT. Mechanistic investigations revealed that exogenous treatment with each TGF-β isoform upregulates Par-4 mRNA and protein levels in parallel levels of phosphorylated Smad2 and IκB-α increase. Disruption of TGF-β signaling by using ALK5 inhibitor, neutralizing TGF-β antibody or phosphoinositide 3-kinase inhibitor reduces endogenous Par-4 levels, suggesting that both Smad and NF-κB pathways are involved in TGF-β-mediated Par-4 upregulation. NF-κB-binding sites in Par-4 promoter have previously been reported; however, using chromatin immunoprecipitation assay we showed that Par-4 promoter region also contains Smad4-binding site. Furthermore, TGF-β promotes nuclear localization of Par-4. Prolonged TGF-β3 treatment disrupts epithelial cell morphology, promotes cell motility and induces upregulation of Snail, vimentin, zinc-finger E-box binding homeobox 1 and N-Cadherin and downregulation of Claudin-1 and E-Cadherin. Forced expression of Par-4, results in the upregulation of vimentin and Snail expression together with increase in cell migration. In contrast, small interfering RNA-mediated silencing of Par-4 expression results in decrease of vimentin and Snail expression and prevents TGF-β-induced EMT. We have also uncovered a role of X-linked inhibitor of apoptosis protein in the regulation of endogenous Par-4 levels through inhibition of caspase-mediated cleavage. In conclusion, our findings suggest that Par-4 is a novel and essential downstream target of TGF-β signaling and acts as an important factor during TGF-β-induced EMT.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis Regulatory Proteins / genetics
  • Apoptosis Regulatory Proteins / metabolism*
  • Cell Line, Tumor
  • Endometrial Neoplasms / genetics
  • Endometrial Neoplasms / metabolism*
  • Endometrial Neoplasms / physiopathology
  • Epithelial-Mesenchymal Transition*
  • Female
  • Humans
  • Mice
  • NF-kappa B / genetics
  • NF-kappa B / metabolism*
  • Promoter Regions, Genetic
  • Protein Binding
  • Signal Transduction
  • Smad4 Protein / genetics
  • Smad4 Protein / metabolism
  • Transforming Growth Factor beta / metabolism*
  • Uterine Cervical Neoplasms / genetics
  • Uterine Cervical Neoplasms / metabolism*
  • Uterine Cervical Neoplasms / physiopathology

Substances

  • Apoptosis Regulatory Proteins
  • NF-kappa B
  • Smad4 Protein
  • Transforming Growth Factor beta
  • prostate apoptosis response-4 protein