Isolation and characterization of a new bacteriochlorophyll-c bearing a neopentyl substituent at the 8-position from the bciD-deletion mutant of the brown-colored green sulfur bacterium Chlorobaculum limnaeum

Photosynth Res. 2014 Jul;121(1):3-12. doi: 10.1007/s11120-014-9977-8. Epub 2014 Feb 5.

Abstract

We recently constructed the mutant of the brown-colored green sulfur bacterium Chlorobaculum limnaeum lacking BciD which was responsible for formation of a formyl group at the 7-position in bacteriochlorophyll(BChl)-e biosynthesis. This mutant exclusively gave BChl-c, but not BChl-e, as the chlorosome pigments (Harada et al. in PLoS One 8(4):e60026, 2013). By the mutation, the homolog and epimer composition of the pigment was drastically altered. The methylation at the 8(2)-position in the mutant cells proceeded to create BChl-c carrying large alkyl substituents at this position. Correspondingly, the content of BChls-c having the (S)-configuration at the chiral 3(1)-position remarkably increased and accounted for 80.6 % of the total BChl-c. Based on the alteration of the pigment composition in the mutant cells, a new BChl-c bearing the bulkiest, triple 8(2)-methylated neopentyl substituent at the 8-position ([N,E]BChl-c) was identified. The molecular structure of [N,E]BChl-c was fully determined by its NMR, mass, and circular dichroism spectra. The newly identified [N,E]BChl-c was epimerically pure at the chiral 3(1)-position and its stereochemistry was determined to be an (S)-configuration by modified Mosher's method. Further, the effects of the C8(2)-methylation on the optical absorption properties of monomeric BChls-c were investigated. The Soret but not Qy absorption bands shifted to longer wavelengths by the extra methylation (at most 1.4 nm). The C8(2)-methylation induced a slight but apparent effect on absorption properties of BChls-c in their monomeric states.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / metabolism*
  • Bacteriochlorophylls / metabolism*
  • Chlorobi / genetics
  • Chlorobi / metabolism*
  • Methylation
  • Mutation

Substances

  • Bacterial Proteins
  • Bacteriochlorophylls
  • bacteriochlorophyll e
  • bacteriochlorophyll c