Unexpected complex formation between coralyne and cyclic diadenosine monophosphate providing a simple fluorescent turn-on assay to detect this bacterial second messenger

Anal Chem. 2014 Mar 4;86(5):2412-20. doi: 10.1021/ac403203x. Epub 2014 Feb 19.

Abstract

Cyclic diadenosine monophosphate (c-di-AMP) has emerged as an important dinucleotide that is involved in several processes in bacteria, including cell wall remodeling (and therefore resistance to antibiotics that target bacterial cell wall). Small molecules that target c-di-AMP metabolism enzymes have the potential to be used as antibiotics. Coralyne is known to form strong complexes with polyadenine containing eight or more adenine stretches but not with short polyadenine oligonucleotides. Using a panel of techniques (UV, both steady state fluorescence and fluorescence lifetime measurements, circular dichroism (CD), NMR, and Job plots), we demonstrate that c-di-AMP, which contains only two adenine bases is an exception to this rule and that it can form complexes with coralyne, even at low micromolar concentrations. Interestingly, pApA (the linear analog of c-di-AMP that also contains two adenines) or cyclic diguanylate (c-di-GMP, another nucleotide second messenger in bacteria) did not form any complex with coralyne. Unlike polyadenine, which forms a 2:1 complex with coralyne, c-di-AMP forms a higher order complex with coralyne (≥6:1). Additionally, whereas polyadenine reduces the fluorescence of coralyne when bound, c-di-AMP enhances the fluorescence of coralyne. We use the quenching property of halides to selectively quench the fluorescence of unbound coralyne but not that of coralyne bound to c-di-AMP. Using this simple selective quenching strategy, the assay could be used to monitor the synthesis of c-di-AMP by DisA or the degradation of c-di-AMP by YybT. Apart from the practical utility of this assay for c-di-AMP research, this work also demonstrates that, when administered to cells, intercalators might not only associate with polynucleotides, such as DNA or RNA, but also could associate with cyclic dinucleotides to disrupt or modulate signal transduction processes mediated by these nucleotides.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Bacteria / chemistry*
  • Berberine Alkaloids / chemistry*
  • Chromatography, Affinity
  • Dinucleoside Phosphates / chemistry*
  • Fluorescence
  • Second Messenger Systems*
  • Spectrum Analysis / methods

Substances

  • Berberine Alkaloids
  • Dinucleoside Phosphates
  • cyclic diadenosine phosphate
  • coralyne

Grants and funding

National Institutes of Health, United States