Near-isogenic lines for measuring phenotypic effects of DIMBOA-Glc methyltransferase activity in maize

Plant Signal Behav. 2013 Oct;8(10):doi: 10.4161/psb.26779. doi: 10.4161/psb.26779.

Abstract

Three O-methyltransferases (BX10a, b, c) catalyze the conversion of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside (DIM BOA-Glc) to 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOA -Glc) in maize (Zea mays). Variation in benzoxazinoid accumulation and resistance to Rhopalosiphum maidis (corn leaf aphid) was attributed to a natural CACTA family transposon insertion that inactivates Bx10c. Whereas maize inbred line B73 has this transposon insertion, line CM L277 does not. To characterize the phenotypic effects of DIM BOA-Glc methyltransferase activity, we created near-isogenic lines derived from B73 and CM L277 that do or do not contain the transposon insertion. Bx10c inactivation causes high DIM BOA -Glc, low HDMBOA-Glc, and decreased aphid reproduction relative to near-isogenic lines that have a functional Bx10c gene. These results confirm the importance of this locus in maize aphid resistance. The availability of Bx10c near-isogenic lines will facilitate further research on the function of different benzoxazinoids and DIM BOA-Glc methyltransferase activity in maize defense against herbivores and pathogens.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Aphids / pathogenicity*
  • Methyltransferases / metabolism*
  • Reproduction / physiology*
  • Zea mays / enzymology*
  • Zea mays / parasitology*

Substances

  • Methyltransferases