Anti-Inflammatory Effects and Mechanisms of Fatsia polycarpa Hayata and Its Constituents

Evid Based Complement Alternat Med. 2013:2013:857213. doi: 10.1155/2013/857213. Epub 2013 Dec 10.

Abstract

Fatsia polycarpa, a plant endemic to Taiwan, is an herbal medicine known for treating several inflammation-related diseases, but its biological function needs scientific support. Thus, the anti-inflammatory effects and mechanisms of the methanolic crude extract (MCE) of F. polycarpa and its feature constituents, that is, brassicasterol (a phytosterol), triterpenoids 3 α -hydroxyolean-11,13(18)-dien-28-oic acid (HODA), 3 α -hydroxyolean-11-en-28,13 β -olide (HOEO), fatsicarpain D, and fatsicarpain F, were investigated. MCE and HOEO, but not brassicasterol, dose-dependently inhibited lipopolysaccharide- (LPS-)induced expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 macrophage line, whereas HODA, fatsicarpain D and fatsicarpain F were toxic to RAW cells. Additionally, MCE and HOEO suppressed LPS-induced production of nitric oxide, prostaglandin E2, and interleukin-1 β and interfered with LPS-promoted activation of the inhibitor kappa B kinase (IKK)/nuclear factor- κ B (NF- κ B) pathway, and that of the mitogen-activated protein kinases (MAPKs) extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. In animal tests, MCE and HOEO effectively ameliorated 12-O-tetradecanoylphorobol-13 acetate- (TPA-)induced ear edema of mice. Thus, MCE of F. polycarpa exhibited an obvious anti-inflammatory activity in vivo and in vitro that likely involved the inhibition of the IKK/NF- κ B pathway and the MAPKs, which may be attributed by triterpenoids such as HOEO.