Composition-dependent electron transport in CdS(x)Se(1-x) nanobelts: a THz spectroscopy study

Opt Lett. 2014 Feb 1;39(3):567-70. doi: 10.1364/OL.39.000567.

Abstract

We present a study on the composition-dependent electron transport in ternary CdS(x)Se(1-x) nanobelts at equilibrium and nonequilibrium conditions via THz spectroscopy. The measured spectra are analyzed using a Drude-Smith model combined with a harmonic oscillator. The physical origin of parameters in the Drude-Smith model is studied in detail. Under equilibrium conditions, the surface depletion region is the dominant factor to free-carrier backscattering. However, under nonequilibrium conditions, the influence of the surface depletion region is masked by the high bulk concentration and the free carriers are mainly localized by composition disorder. The contributions from different mechanisms to the carrier mobility are also explored. In equilibrium, alloy scattering is the most vital scattering mechanism for nanobelts with x=0.25→0.9 since composition disorder is significant in this range. On the other hand, the effect of electron-phonon interaction increases under photoexcitation.