Highly correlated electronic structure calculations of the He-C3 van der Waals complex and collision-induced rotational transitions of C3

J Phys Chem A. 2014 Aug 21;118(33):6351-60. doi: 10.1021/jp412048w. Epub 2014 Feb 14.

Abstract

An accurate 2D ab initio potential energy surface of the He-C3 collisional system is calculated using the supermolecular coupled-cluster method with up to perturbative quadruple excitations, CCSDT(Q). This interaction potential is then incorporated in full close-coupling calculations of rotational excitation/de-excitation cross sections in He + C3 collisions for rotational levels j = 0, 2, ..., 10 and collision energies up to 1000 cm(-1). Corresponding rate coefficients are reported for temperature between 1 and 100 K. Results are found to be in excellent agreement with available theoretical data that were restricted to the temperature range of 5-15 K. Implications of the computed rate coefficients to astrophysical models of C3 and carbon clusters in interstellar and circumstellar environments are discussed.