Environment-sensitive fluorescent supramolecular nanofibers for imaging applications

Anal Chem. 2014 Feb 18;86(4):2193-9. doi: 10.1021/ac4038653. Epub 2014 Feb 4.

Abstract

The combination of an environment-sensitive fluorophore, 4-nitro-2,1,3-benzoxadiazole (NBD), and peptides have yielded supramolecular nanofibers with enhanced cellular uptake, brighter fluorescence, and significant fluorescence responses to external stimuli. We had designed and synthesized NBD-FFYEEGGH that can form supramolecular nanofibers and emit brighter than its counterpart of NBD-EEGGH without the self-assembling property. The nanofibers of NBD-FFYEEGGH could specifically bind to Cu(2+), leading to the formation of fluorescence quenched elongated nanofibers. This fluorescence quenching property was enhanced in self-assembling nanofibers and could be applied for detection of Cu(2+) in vitro and within cells. In a further step, an enzyme-cleavable DEVD peptide was placed between NBD-FFY and the copper binding tripeptide GGH. The resulting self-assembling peptide NBD-FFFDEVDGGH also showed strong fluorescence quenching to Cu(2+). Upon the enzymatic cleavage to remove the Cu(2+)-binding GGH tripeptide from the peptide, the fluorescence was restored. The cellular uptake of nanofibers was better than that of free molecules because of endocytosis. The supramolecular nanofibers with fluorescence turn-on property could therefore be applied for detection of caspase-3 activity in vitro and within cells. We believe that the combination of environment-sensitive fluorescence and fast responses of supramolecular nanostructures would lead to a useful platform to detect many important analytes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Environment*
  • Fluorescent Dyes / chemistry*
  • HeLa Cells
  • Humans
  • Nanofibers / chemistry*
  • Protein Structure, Secondary
  • Spectrometry, Fluorescence / methods*

Substances

  • Fluorescent Dyes