In vivo longitudinal Myelin Water Imaging in rat spinal cord following dorsal column transection injury

Magn Reson Imaging. 2014 Apr;32(3):250-8. doi: 10.1016/j.mri.2013.12.006. Epub 2013 Dec 27.

Abstract

Longitudinal Myelin Water Imaging was carried out in vivo to characterize white matter damage following dorsal column transection (DC Tx) injury at the lumbar level L1 of rat spinal cords. A transmit-receive implantable coil system was used to acquire multiple spin-echo (MSE) quantitative T2 data from the lumbar spinal cords of 16 rats at one week pre-injury as well as 3 and 8weeks post-injury (117 microns in-plane resolution and 1.5mm slice thickness). In addition, ex vivo MSE and DTI data were acquired from cords fixed and excised at 3 or 8weeks post injury using a solenoid coil. The MSE data were used to generate Myelin Water Fractions (MWFs) as a surrogate measure of myelin content, while DTI data were acquired to study damage to the axons. Myelin damage was assessed histologically with Eriochrome cyanine (EC) and Myelin Basic Protein in degenerated myelin (dgen-MBP) staining, and axonal damage was assessed by neurofilament-H in combination with neuron specific beta-III-tubulin (NF/Tub) staining. These MRI and histological measures of injury were studied in the dorsal column at 5mm cranial and 5mm caudal to injury epicenter. MWF increased significantly at 3weeks post-injury at both the cranial and caudal sites, relative to baseline. The values on the cranial side of injury returned to baseline at 8weeks post-injury but remained elevated on the caudal side. This trend was found in both in vivo and ex vivo data. This MWF increase was likely due to the presence of myelin debris, which were cleared by 8 weeks on the cranial, but not the caudal, side. Both EC and dgen-MBP stains displayed similar trends. MWF showed significant correlation with EC staining (R=0.63, p=0.005 in vivo and R=0.74, p=0.0001 ex vivo). MWF also correlated strongly with the dgen-MBP stain, but only on the cranial side (R=0.64, p=0.05 in vivo; R=0.63, p=0.038 ex vivo). This study demonstrates that longitudinal MWI in vivo can accurately characterize white matter damage in DC Tx model of injury in the rat spinal cord.

Keywords: In vivo; Myelin Water Imaging; Rat spinal cord.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Axons / metabolism
  • Axons / pathology*
  • Body Water / metabolism
  • Diffusion Tensor Imaging / methods*
  • Longitudinal Studies
  • Male
  • Myelin Sheath / metabolism
  • Myelin Sheath / pathology*
  • Rats
  • Rats, Sprague-Dawley
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Spinal Cord / metabolism
  • Spinal Cord / pathology*
  • Spinal Cord Injuries / metabolism
  • Spinal Cord Injuries / pathology*
  • Spinal Cord Injuries / surgery