Cost-effective length and timing of school closure during an influenza pandemic depend on the severity

Theor Biol Med Model. 2014 Jan 21:11:5. doi: 10.1186/1742-4682-11-5.

Abstract

Background: There has been a variation in published opinions toward the effectiveness of school closure which is implemented reactively when substantial influenza transmissions are seen at schools. Parameterizing an age-structured epidemic model using published estimates of the pandemic H1N1-2009 and accounting for the cost effectiveness, we examined if the timing and length of school closure could be optimized.

Methods: Age-structured renewal equation was employed to describe the epidemic dynamics of an influenza pandemic. School closure was assumed to take place only once during the course of the pandemic, abruptly reducing child-to-child transmission for a fixed length of time and also influencing the transmission between children and adults. Public health effectiveness was measured by reduction in the cumulative incidence, and cost effectiveness was also examined by calculating the incremental cost effectiveness ratio and adopting a threshold of 1.0 × 10⁷ Japanese Yen/life-year.

Results: School closure at the epidemic peak appeared to yield the largest reduction in the final size, while the time of epidemic peak was shown to depend on the transmissibility. As the length of school closure was extended, we observed larger reduction in the cumulative incidence. Nevertheless, the cost effectiveness analysis showed that the cost of our school closure scenario with the parameters derived from H1N1-2009 was not justifiable. If the risk of death is three times or greater than that of H1N1-2009, the school closure could be regarded as cost effective.

Conclusions: There is no fixed timing and duration of school closure that can be recommended as universal guideline for different types of influenza viruses. The effectiveness of school closure depends on the transmission dynamics of a particular influenza virus strain, especially the virulence (i.e. the infection fatality risk).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Child
  • Cost-Benefit Analysis*
  • Disease Outbreaks*
  • Humans
  • Influenza, Human / epidemiology*
  • Influenza, Human / transmission
  • Models, Theoretical*
  • Public Health Practice
  • Schools*