Conducting-interlayer SiOx memory devices on rigid and flexible substrates

ACS Nano. 2014 Feb 25;8(2):1410-8. doi: 10.1021/nn4052327. Epub 2014 Jan 21.

Abstract

SiOx memory devices that offer significant improvement in switching performance were fabricated at room temperature with conducting interlayers such as Pd, Ti, carbon, or multilayer graphene. In particular, the Pd-interlayer SiOx memory devices exhibited improvements in lowering the electroforming voltages and threshold voltages as the number of inserted Pd layers was increased, as compared to a pure SiOx memory structure. In addition, we demonstrated that the Pd-interlayer SiOx junction fabricated on a flexible substrate maintained low electroforming voltage and mechanically stable switching properties. From these observations, a possible switching mechanism is discussed based on the formation of individual conducting paths at the weakest edge regions of each SiOx film, where the normalized bond-breaking probability of SiOx is influenced by the voltage and the thickness of SiOx. This fabrication approach offers a useful structural platform for next-generation memory applications for enhancement of the switching properties while maintaining a low-temperature fabrication method that is even amenable with flexible substrates.