Evaluating Potential Therapies in a Mouse Model of Focal Retinal Degeneration with Age-related Macular Degeneration (AMD)-Like Lesions

J Clin Exp Ophthalmol. 2013 Oct 1;4(5):1000296. doi: 10.4172/2155-9570.1000296.

Abstract

Although the mouse has no macula leutea, its neuroretina and retinal pigment epithelium (RPE) can develop lesions mimicking certain features of age-related macular degeneration (AMD). Differences between the Ccl2 and Cx3cr1 double deficient mouse on Crb1rd8 (rd8) background (DKO rd8 ) and the Crb1rd8 mouse in photoreceptor and RPE pathology, as well as ocularA2E contents and immune responses, show that DKO rd8 recapitulates some human AMD-like features in addition to rd8 retinal dystrophy/degeneration. Different therapeutic interventions have been demonstrated to be effective on the AMD-like features of DKO rd8 mice. The use of the DKO rd8 model and C57BL/6N (wild type, WT) mice as group controls (4 groups) to test treatments such as high omega-3 polyunsaturated fatty acid (n-3) diet has, for example, shown the beneficial effect of n-3 on AMD-like lesions by anti-inflammatory action of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). The use of self-control in the DKO rd8 mouse by treating one eye and using the contralateral eye as the control for the same mouse allows for appropriate interventional experiments and evaluates various novel therapeutic agents. Three examples will be briefly presented and discussed: (1) tumor necrosis factor-inducible gene 6 recombinant protein (TSG-6) arrests the AMD-like lesions via modulation of ocular immunological gene expression, e.g., Il-17a; (2) adeno-associated virus encoding sIL-17R (AAV2.sIL17R) stabilizes the AMD-like lesions; and (3) pigment epithelium-derived factor (PEDF) ameliorates the AMD-lesions by its anti-inflammatory, anti-apoptotic and neuroprotective roles. Therefore, the DKO rd8 mouse model can be useful and appropriate for therapeutic compound screening in the management of human AMD.

Keywords: Age-related macular degeneration (AMD); Ccl2; Cx3cr1; Mouse models; Therapy; rd8.