Multidepth pumping tests in deep aquifers

Ground Water. 2014 Sep:52 Suppl 1:148-60. doi: 10.1111/gwat.12155. Epub 2014 Jan 15.

Abstract

Multidepth pumping tests (MDPTs), in which different sections of a screen are pumped in sequence, are not being used by hydrogeologists, despite the capability of such tests to resolve uncertainties in the estimation of aquifer characteristics. MDPTs can be used to discern the effects of partial penetration and vertical anisotropy. This article demonstrates the use of MDPTs for a deep and vertically anisotropic aquifer, based on a real and unique series of pumping tests conducted in the Indus Basin. Traditional single-layer methods, which incorporate partial penetration and vertical scaling, were employed to evaluate these tests. However, the drawdowns of the 19 piezometers at different depths for which times series data were available could not be matched, presumably because of the layered structure of the aquifer. Numerical (MODFLOW) and multilayer analytical (Hemker and Maas 1987; Hemker 1999) approaches were used to assess the benefits of using MDPTs in the analysis of deep layered and anisotropic aquifers. The multilayer analytical solution results are consistent with the measured and numerically computed drawdowns. The original step-drawdown data were used to verify the model independently. The results of statistical analyses indicate that the parameters for a three-layer system are uniquely estimated. A sensitivity analysis showed that aquifer depths greater than 900 m do not affect the drawdown. The multilayer analytical solution was implemented in MATLAB and can be found in the online version of this article. This multilayer analytical approach was implemented in MLU by Hemker and Randall (2013) for up to 40 layers. The results of this study will be useful in groundwater management, exploration, and optimal well depth estimation for the Indus Basin aquifer and other vertically heterogeneous aquifers.

MeSH terms

  • Anisotropy
  • Environmental Monitoring / methods*
  • Models, Theoretical
  • Pakistan
  • Water Movements*
  • Water Wells / analysis*