Effects of a novel curcumin derivative on insulin synthesis and secretion in streptozotocin-treated rat pancreatic islets in vitro

Chin Med. 2014 Jan 14;9(1):3. doi: 10.1186/1749-8546-9-3.

Abstract

Background: Hyperglycemia induces activation of the c-Jun N-terminal kinase (JNK) pathway, which suppresses insulin gene expression and reduces DNA binding of pancreatic and duodenal homeobox factor (PDX)-1. This study aims to investigate the effects of a novel curcumin derivative (NCD) on JNK signaling pathway on insulin synthesis and secretion in streptozotocin (STZ)-treated rat pancreatic islets in vitro.

Methods: Isolated rat pancreatic islets were divided into five groups: untreated control group; group treated with NCD (10 μM); group exposed to STZ (5 mM); group treated with NCD (10 μM) and then exposed to STZ (5 mM); and group exposed to STZ (5 mM) and then treated with NCD (10 μM). The pancreatic islets from all groups were used for DNA fragmentation assays and quantitative assessments of the JNK, Pdx1, glucose transporter-2 (GLUT2), heme oxygenase (HO)-1, transcription factor 7-like 2 (TCF7L2), and glucagon-like peptide (GLP)-1 gene expression levels. The intracellular calcium, zinc, and the phosphorylated and total JNK protein levels were assessed. The insulin (secreted/total) and C-peptide levels were examined in islet culture medium.

Results: NCD protected pancreatic islets against STZ-induced DNA damage, improved total insulin (P = 0.001), secreted insulin (P = 0.001), and C-peptide levels (P = 0.001), normalized mRNA expressions of insulin, Pdx1, and GLUT2 (P = 0.0001), and significantly elevated calcium and zinc levels (P = 0.0001). All effects were significant when islets were treated with NCD before STZ (P = 0.05). JNK gene overexpression and JNK protein levels induced by STZ were significantly inhibited after NCD treatment of islets ( P = 0.0001). NCD-treated islets showed significantly elevated gene expressions of HO-1, TCF7L2, and GLP-1 (P = 0.0001), and these upregulated gene expressions were more significantly elevated with NCD treatment before STZ than after STZ (P = 0.05).

Conclusions: NCD improved insulin synthesis and secretion in vitro in isolated pancreatic islets treated with STZ through inhibition of the JNK pathway, up-regulation of the gene expressions of HO-1, TCF7L2, and GLP-1 and enhancing effects on calcium and zinc levels.