[Spatial heterogeneity in body condition of small yellow croaker in Yellow Sea and East China Sea based on mixed-effects model and quantile regression analysis]

Ying Yong Sheng Tai Xue Bao. 2013 Sep;24(9):2631-42.
[Article in Chinese]

Abstract

By using the 2008-2010 investigation data about the body condition of small yellow croaker in the offshore waters of southern Yellow Sea (SYS), open waters of northern East China Sea (NECS), and offshore waters of middle East China Sea (MECS), this paper analyzed the spatial heterogeneity of body length-body mass of juvenile and adult small yellow croakers by the statistical approaches of mean regression model and quantile regression model. The results showed that the residual standard errors from the analysis of covariance (ANCOVA) and the linear mixed-effects model were similar, and those from the simple linear regression were the highest. For the juvenile small yellow croakers, their mean body mass in SYS and NECS estimated by the mixed-effects mean regression model was higher than the overall average mass across the three regions, while the mean body mass in MECS was below the overall average. For the adult small yellow croakers, their mean body mass in NECS was higher than the overall average, while the mean body mass in SYS and MECS was below the overall average. The results from quantile regression indicated the substantial differences in the allometric relationships of juvenile small yellow croakers between SYS, NECS, and MECS, with the estimated mean exponent of the allometric relationship in SYS being 2.85, and the interquartile range being from 2.63 to 2.96, which indicated the heterogeneity of body form. The results from ANCOVA showed that the allometric body length-body mass relationships were significantly different between the 25th and 75th percentile exponent values (F=6.38, df=1737, P<0.01) and the 25th percentile and median exponent values (F=2.35, df=1737, P=0.039). The relationship was marginally different between the median and 75th percentile exponent values (F=2.21, df=1737, P=0.051). The estimated body length-body mass exponent of adult small yellow croakers in SYS was 3.01 (10th and 95th percentiles = 2.77 and 3.1, respectively). The estimated body length-body mass relationships were significantly different from the lower and upper quantiles of the exponent (F=3.31, df=2793, P=0.01) and the median and upper quantiles (F=3.56, df=2793, P<0.01), while no significant difference was observed between the lower and median quantiles (F=0.98, df=2793, P=0.43).

Publication types

  • English Abstract
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Body Composition / physiology*
  • Body Size
  • China
  • Models, Biological*
  • Oceans and Seas
  • Perciformes* / growth & development
  • Perciformes* / physiology
  • Regression Analysis
  • Seawater*