Spatiotemporal positioning of multipotent modules in diverse biological networks

Cell Mol Life Sci. 2014 Jul;71(14):2605-24. doi: 10.1007/s00018-013-1547-2. Epub 2014 Jan 11.

Abstract

A biological network exhibits a modular organization. The modular structure dependent on functional module is of great significance in understanding the organization and dynamics of network functions. A huge variety of module identification methods as well as approaches to analyze modularity and dynamics of the inter- and intra-module interactions have emerged recently, but they are facing unexpected challenges in further practical applications. Here, we discuss recent progress in understanding how such a modular network can be deconstructed spatiotemporally. We focus particularly on elucidating how various deciphering mechanisms operate to ensure precise module identification and assembly. In this case, a system-level understanding of the entire mechanism of module construction is within reach, with important implications for reasonable perspectives in both constructing a modular analysis framework and deconstructing different modular hierarchical structures.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Algorithms
  • Models, Biological*
  • Systems Biology / methods