Crystal structures of IspF from Plasmodium falciparum and Burkholderia cenocepacia: comparisons inform antimicrobial drug target assessment

BMC Struct Biol. 2014 Jan 10:14:1. doi: 10.1186/1472-6807-14-1.

Abstract

Background: 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase (IspF) catalyzes the conversion of 4-diphosphocytidyl-2C-methyl-D-erythritol-2-phosphate to 2C-methyl-D-erythritol-2,4-cyclodiphosphate and cytidine monophosphate in production of isoprenoid-precursors via the methylerythritol phosphate biosynthetic pathway. IspF is found in the protozoan Plasmodium falciparum, a parasite that causes cerebral malaria, as well as in many Gram-negative bacteria such as Burkholderia cenocepacia. IspF represents a potential target for development of broad-spectrum antimicrobial drugs since it is proven or inferred as essential in these pathogens and absent from mammals. Structural studies of IspF from these two important yet distinct pathogens, and comparisons with orthologues have been carried out to generate reagents, to support and inform a structure-based approach to early stage drug discovery.

Results: Efficient recombinant protein production and crystallization protocols were developed, and high-resolution crystal structures of IspF from P. falciparum (Emphasis/Emphasis>IspF) and B. cenocepacia (BcIspF) in complex with cytidine nucleotides determined. Comparisons with orthologues, indicate a high degree of order and conservation in parts of the active site where Zn2+ is bound and where recognition of the cytidine moiety of substrate occurs. However, conformational flexibility is noted in that area of the active site responsible for binding the methylerythritol component of substrate. Unexpectedly, one structure of BcIspF revealed two molecules of cytidine monophosphate in the active site, and another identified citrate coordinating to the catalytic Zn2+. In both cases interactions with ligands appear to help order a flexible loop at one side of the active site. Difficulties were encountered when attempting to derive complex structures with other ligands.

Conclusions: High-resolution crystal structures of IspF from two important human pathogens have been obtained and compared to orthologues. The studies reveal new data on ligand binding, with citrate coordinating to the active site Zn2+ and when present in high concentrations cytidine monophosphate displays two binding modes in the active site. Ligand binding appears to order a part of the active site involved in substrate recognition. The high degree of structural conservation in and around the IspF active site suggests that any structural model might be suitable to support a program of structure-based drug discovery.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Burkholderia cenocepacia / chemistry
  • Burkholderia cenocepacia / enzymology*
  • Catalytic Domain
  • Citric Acid / metabolism
  • Crystallography, X-Ray
  • Erythritol / analogs & derivatives
  • Erythritol / metabolism
  • Models, Molecular
  • Phosphorus-Oxygen Lyases / chemistry*
  • Phosphorus-Oxygen Lyases / metabolism*
  • Plasmodium falciparum / chemistry
  • Plasmodium falciparum / enzymology*
  • Protein Conformation
  • Protein Structure, Secondary
  • Recombinant Proteins / metabolism
  • Sequence Alignment
  • Substrate Specificity
  • Sugar Phosphates / metabolism
  • Zinc / metabolism

Substances

  • 4-diphosphocytidyl-2C methylerythritol 2-phosphate
  • Recombinant Proteins
  • Sugar Phosphates
  • Citric Acid
  • Phosphorus-Oxygen Lyases
  • Zinc
  • Erythritol

Associated data

  • PDB/4C81
  • PDB/4C82
  • PDB/4C8E
  • PDB/4C8G
  • PDB/4C8I