Photochemical reaction mechanism of UV-B-induced monomerization of UVR8 dimers as the first signaling event in UV-B-regulated gene expression in plants

J Phys Chem B. 2014 Jan 30;118(4):951-65. doi: 10.1021/jp4104118. Epub 2014 Jan 21.

Abstract

The Arabidopsis thaliana UV RESISTANCE LOCUS8 (UVR8) protein has been identified to specifically mediate photomorphogenic UV-B responses by acting as a UV-B photoreceptor. The dimeric structure of the UVR8 protein dissociates into signaling-active monomers upon UV-B exposure, and the monomers rapidly interact with downstream signaling components to regulate gene expression. UVR8 monomers revert to dimers in the absence of UV-B radiation, thereby reversing transcription activation. UVR8 amino acid residues W233 and W285 have been identified to play critical roles in the UVR8 dimer for the response to UV-B irradiation. In the present work, the photoreaction mechanism for UVR8 monomerization is explored with quantum chemical cluster calculations and evaluated by molecular dynamics simulations using the wild-type UVR8 dimer and novel force field parameters developed for intermediate radicals formed in the photochemical process. Three different models are investigated, which show that the preferred mechanism for UVR8 monomerization involves electron transfer from residue W233 to W285 and onward to R338 initiated by UV-B irradiation, coupled to simultaneous proton transfer from W233 to D129 leading to the formation of protonated D129, a deprotonated W233 radical, and a neutral R338 radical. Due to the formation of the neutral R338 radical, salt bridges involving this residue are disrupted together with the concomitant interruption of several other key salt bridges R286-D96, R286-D107, R338-D44, R354-E43, and R354-E53. The resulting large decrease in protein-protein interaction energy arising from this sequence of events leads to the monomerization of the UVR8 dimer. The mechanism presented is in accord with all experimental data available to date.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / chemistry
  • Arabidopsis / genetics
  • Arabidopsis / radiation effects*
  • Arabidopsis Proteins / chemistry
  • Arabidopsis Proteins / radiation effects*
  • Chromosomal Proteins, Non-Histone / chemistry
  • Chromosomal Proteins, Non-Histone / radiation effects*
  • Gene Expression Regulation, Plant / radiation effects*
  • Models, Molecular
  • Molecular Dynamics Simulation
  • Molecular Structure
  • Photochemical Processes / radiation effects*
  • Protein Multimerization / radiation effects*
  • Quantum Theory
  • Signal Transduction / radiation effects*
  • Ultraviolet Rays*

Substances

  • Arabidopsis Proteins
  • Chromosomal Proteins, Non-Histone
  • Uvr8 protein, Arabidopsis