Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films

J Colloid Interface Sci. 2014 Mar 1:417:402-9. doi: 10.1016/j.jcis.2013.11.072. Epub 2013 Dec 4.

Abstract

Enhanced photocatalytic degradation of methylene blue (MB) using graphitic carbon nitride/titanium dioxide (g-C3N4/TiO2) catalyst films has been demonstrated in this present work. The g-C3N4/TiO2 composites were prepared by directly heating the mixture of melamine and pre-synthesized TiO2 nanoparticles in Ar gas flow. The g-C3N4 contents in the g-C3N4/TiO2 composites were varied as 0, 20, 50 and 70 wt%. It was found that the visible-light-induced photocatalytic degradation of MB was remarkably increased upon coupling TiO2 with g-C3N4 and the best degradation performance of ~70% was obtained from 50 wt% g-C3N4 loading content. Results from UV-vis absorption study, Electron microscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy suggest that the improved photoactivity is due to a decrease in band gap energy, an increased light absorption in visible light region and possibly an enhanced electron-hole separation efficiency as a result of effective interfacial electron transfer between TiO2 and g-C3N4 of the g-C3N4/TiO2 composite film. Based on the obtained results, the possible MB degradation mechanism is ascribed mainly to the generation of active species induced by the photogenerated electrons.

Keywords: Graphitic carbon nitride; Photocatalysis; Titanium dioxide; Visible light.