Heteronuclear cross-relaxation effects in the NMR spectroscopy of hyperpolarized targets

Chemphyschem. 2014 Feb 24;15(3):436-43. doi: 10.1002/cphc.201300857. Epub 2014 Jan 8.

Abstract

Dissolution dynamic nuclear polarization (DNP) enables high-sensitivity solution-phase NMR experiments on long-lived nuclear spin species such as (15)N and (13)C. This report explores certain features arising in solution-state (1)H NMR upon polarizing low-γ nuclear species. Following solid-state hyperpolarization of both (13)C and (1)H, solution-phase (1)H NMR experiments on dissolved samples revealed transient effects, whereby peaks arising from protons bonded to the naturally occurring (13)C nuclei appeared larger than the typically dominant (12)C-bonded (1)H resonances. This enhancement of the satellite peaks was examined in detail with respect to a variety of mechanisms that could potentially explain this observation. Both two- and three-spin phenomena active in the solid state could lead to this kind of effect; still, experimental observations revealed that the enhancement originates from (13)C→(1)H polarization-transfer processes active in the liquid state. Kinetic equations based on modified heteronuclear cross-relaxation models were examined, and found to well describe the distinct patterns of growth and decay shown by the (13)C-bound (1)H NMR satellite resonances. The dynamics of these novel cross-relaxation phenomena were determined, and their potential usefulness as tools for investigating hyperpolarized ensembles and for obtaining enhanced-sensitivity (1)H NMR traces was explored.

Keywords: NMR spectroscopy; hyperpolarization; nuclear hyperpolarization; polarization transfer; satellite-peak enhancement.