Are accurate computations of the 13C' shielding feasible at the DFT level of theory?

J Comput Chem. 2014 Feb 5;35(4):309-12. doi: 10.1002/jcc.23499. Epub 2013 Dec 3.

Abstract

The goal of this study is twofold. First, to investigate the relative influence of the main structural factors affecting the computation of the (13)C' shielding, namely, the conformation of the residue itself and the next nearest-neighbor effects. Second, to determine whether calculation of the (13)C' shielding at the density functional level of theory (DFT), with an accuracy similar to that of the (13)C(α) shielding, is feasible with the existing computational resources. The DFT calculations, carried out for a large number of possible conformations of the tripeptide Ac-GXY-NMe, with different combinations of X and Y residues, enable us to conclude that the accurate computation of the (13)C' shielding for a given residue X depends on the: (i) (ϕ,ψ) backbone torsional angles of X; (ii) side-chain conformation of X; (iii) (ϕ,ψ) torsional angles of Y; and (iv) identity of residue Y. Consequently, DFT-based quantum mechanical calculations of the (13)C' shielding, with all these factors taken into account, are two orders of magnitude more CPU demanding than the computation, with similar accuracy, of the (13)C(α) shielding. Despite not considering the effect of the possible hydrogen bond interaction of the carbonyl oxygen, this work contributes to our general understanding of the main structural factors affecting the accurate computation of the (13)C' shielding in proteins and may spur significant progress in effort to develop new validation methods for protein structures.

Keywords: DFT-computation of shielding; factors affecting shielding computation; heavy nuclei shielding; protein determination; protein validation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon Isotopes
  • Oligopeptides / chemistry*
  • Protein Conformation
  • Quantum Theory*

Substances

  • Carbon Isotopes
  • Oligopeptides