Peptidoglycan LD-carboxypeptidase Pgp2 influences Campylobacter jejuni helical cell shape and pathogenic properties and provides the substrate for the DL-carboxypeptidase Pgp1

J Biol Chem. 2014 Mar 21;289(12):8007-18. doi: 10.1074/jbc.M113.491829. Epub 2014 Jan 6.

Abstract

Despite the importance of Campylobacter jejuni as a pathogen, little is known about the fundamental aspects of its peptidoglycan (PG) structure and factors modulating its helical morphology. A PG dl-carboxypeptidase Pgp1 essential for maintenance of C. jejuni helical shape was recently identified. Bioinformatic analysis revealed the CJJ81176_0915 gene product as co-occurring with Pgp1 in several organisms. Deletion of cjj81176_0915 (renamed pgp2) resulted in straight morphology, representing the second C. jejuni gene affecting cell shape. The PG structure of a Δpgp2 mutant showed an increase in tetrapeptide-containing muropeptides and a complete absence of tripeptides, consistent with ld-carboxypeptidase activity, which was confirmed biochemically. PG analysis of a Δpgp1Δpgp2 double mutant demonstrated that Pgp2 activity is required to generate the tripeptide substrate for Pgp1. Loss of pgp2 affected several pathogenic properties; the deletion strain was defective for motility in semisolid agar, biofilm formation, and fluorescence on calcofluor white. Δpgp2 PG also caused decreased stimulation of the human nucleotide-binding oligomerization domain 1 (Nod1) proinflammatory mediator in comparison with wild type, as expected from the reduction in muropeptide tripeptides (the primary Nod1 agonist) in the mutant; however, these changes did not alter the ability of the Δpgp2 mutant strain to survive within human epithelial cells or to elicit secretion of IL-8 from epithelial cells after infection. The pgp2 mutant also showed significantly reduced fitness in a chick colonization model. Collectively, these analyses enhance our understanding of C. jejuni PG maturation and help to clarify how PG structure and cell shape impact pathogenic attributes.

Keywords: Bacterial Cell Shape; Campylobacter; Carboxypeptidase; Host-Pathogen Interactions; Microbial Pathogenesis; Peptidoglycan.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biofilms / growth & development
  • Campylobacter Infections / microbiology*
  • Campylobacter jejuni / cytology*
  • Campylobacter jejuni / enzymology*
  • Campylobacter jejuni / pathogenicity
  • Campylobacter jejuni / physiology
  • Carboxypeptidases / genetics
  • Carboxypeptidases / metabolism*
  • Cell Line
  • Epithelial Cells / microbiology*
  • Gene Deletion
  • Host-Pathogen Interactions*
  • Humans
  • Peptidoglycan / chemistry
  • Peptidoglycan / metabolism

Substances

  • Peptidoglycan
  • Carboxypeptidases
  • LD-carboxypeptidase