Ultrasensitive photoreversible molecular sensors of azobenzene-functionalized plasmonic nanoantennas

Nano Lett. 2014 Feb 12;14(2):532-40. doi: 10.1021/nl403576c. Epub 2014 Jan 3.

Abstract

This Letter describes an unprecedentedly large and photoreversible localized surface plasmon resonance (LSPR) wavelength shift caused by photoisomerization of azobenzenes attached to gold nanoprisms that act as nanoantennas. The blue light-induced cis to trans azobenzene conformational change occurs in the solid state and controls the optical properties of the nanoprisms shifting their LSPR peak up to 21 nm toward longer wavelengths. This shift is consistent with the increase in thickness of the local dielectric environment (0.6 nm) surrounding the nanoprism and perhaps a contribution from plasmonic energy transfer between the nanoprism and azobenzenes. The effects of the azobenzene conformational change and its photoreversibility were also probed through surface-enhanced Raman spectroscopy (SERS) showing that the electronic interaction between the nanoprisms and bound azobenzenes in their cis conformation significantly enhances the intensity of the Raman bands of the azobenzenes. The SERS data suggests that the isomerization is controlled by first-order kinetics with a rate constant of 1.0 × 10(-4) s(-1). Our demonstration of light-induced photoreversibility of this type of molecular machine is the first-step toward removing present limitations on detection of molecular motion in solid-state devices using LSPR spectroscopy with nanoprisms. Modulating the LSPR peak position and controlling energy transfer across the nanostructure-organic molecule interface are very important for the fabrication of plasmonic-based nanoscale devices.

Publication types

  • Research Support, Non-U.S. Gov't