MicroRNA-155 controls Toll-like receptor 3- and hepatitis C virus-induced immune responses in the liver

J Viral Hepat. 2014 Feb;21(2):99-110. doi: 10.1111/jvh.12126. Epub 2013 Sep 11.

Abstract

The hepatitis C virus (HCV) establishes persistent infections despite strong activation of the innate immune system through TLR3 and other sensors. Therefore, we analysed regulatory mechanisms of TLR3-induced immune responses in nonparenchymal liver cells (NPCs). Effects of Interleukin-10 (IL-10), transforming growth factor beta (TGF-β) and immunoregulatory miR-155 on poly I:C-activated murine (C57BL/6) Kupffer cells (KC) and sinusoidal endothelial cells (LSEC) were assessed in vitro. NPCs were assayed for inflammatory and antiviral cytokines and T-cell (Balb/c)-activating factors. Gene expression of miR-155, IL-10, TGF-β and interferon sensitive genes (ISGs) in biopsies of patients with HCV was determined by qrt-PCR. TLR3-induced antiviral activity in murine NPCs was potently suppressed by IL-10 and TGF-β which correlated with decreased TLR3 expression and inhibition of NF-κB and IRF-3 activation. T-cell activation, induced by TLR3-activated NPCs, was also suppressed by IL-10 and TGF-β, which was associated with a down-regulation of CD80 and CD86. Pretreatment with IL-10 or TGF-β suppressed TLR3-induced miR-155 expression, which itself positively regulated poly I:C-mediated immune responses, thus counteracting IL-10 or TGF-β-induced immunosuppression. In addition, hepatic expression of miR-155 was elevated in chronically infected patients with HCV, was associated with an IL-28B SNP (rs12979860) and was inversely correlated with HCV serum load and ISG expression levels. As miR-155 is a key regulator of anti-inflammatory mechanisms that control innate and adaptive hepatic immune responses during HCV infection, miR-155 based therapies may represent a novel mechanism to control HCV in the future.

Keywords: Kupffer cells; hepatitis C virus; interleukin-10; liver sinusoidal endothelial cells; miR-155; transforming growth factor beta.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Endothelial Cells / immunology
  • Gene Expression Profiling
  • Hepacivirus / immunology*
  • Hepatitis C, Chronic / immunology*
  • Humans
  • Kupffer Cells / immunology
  • Liver / pathology*
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C57BL
  • MicroRNAs / metabolism*
  • Toll-Like Receptor 3 / immunology*

Substances

  • MIRN155 microRNA, human
  • MicroRNAs
  • Mirn155 microRNA, mouse
  • TLR3 protein, human
  • TLR3 protein, mouse
  • Toll-Like Receptor 3