Fabrication, characterization, and energetic properties of metallized fibers

ACS Appl Mater Interfaces. 2014 May 14;6(9):6049-53. doi: 10.1021/am404583h. Epub 2013 Dec 31.

Abstract

Polystyrene fibers loaded with an energetic blend of nanoaluminum (n-Al) and perfluoropolyether (PFPE) were successfully fabricated via electrospinning producing nanothermite fabrics. Fibers were generated with loadings up to 17 wt % n-Al/PFPE incorporated into the fiber. Microscopy analysis by SEM and TEM confirm a uniform dispersion of PFPE treated n-Al on the outside and inside of the fibers. Metallized fibers were thermally active upon immediate ignition from a controlled flame source. Thermal analysis by differential scanning calorimetry (DSC) found no change in glass transition temperature when comparing pure polystyrene fibers with fibers loaded up to 17 wt % n-Al/PFPE. Thermal gravimetric analysis (TGA) revealed a shift in decomposition temperatures to lower onsets upon increased loadings of n-Al/PFPE blends, consistent with previous studies. Flame propagation studies confirmed that the metallized fibers are pryolants. These metallized fibers are a recent development in metastable intermolecular composites (MICs) and details of their synthesis, characterization, and thermal properties are presented.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.