Aquatic ecosystem response to timber harvesting for the purpose of restoring aspen

PLoS One. 2013 Dec 20;8(12):e84561. doi: 10.1371/journal.pone.0084561. eCollection 2013.

Abstract

The removal of conifers through commercial timber harvesting has been successful in restoring aspen, however many aspen stands are located near streams, and there are concerns about potential aquatic ecosystem impairment. We examined the effects of management-scale conifer removal from aspen stands located adjacent to streams on water quality, solar radiation, canopy cover, temperature, aquatic macroinvertebrates, and soil moisture. This 8-year study (2003-2010) involved two projects located in Lassen National Forest. The Pine-Bogard Project consisted of three treatments adjacent to Pine and Bogard Creeks: (i) Phase 1 in January 2004, (ii) Phase 2 in August 2005, and (iii) Phase 3 in January 2008. The Bailey Project consisted of one treatment adjacent to Bailey Creek in September 2006. Treatments involved whole tree removal using track-laying harvesters and rubber tire skidders. More than 80% of all samples analyzed for NO₃-N, NH₄-N, and PO₄-P at Pine, Bogard, and Bailey Creeks were below the detection limit, with the exception of naturally elevated PO₄-P in Bogard Creek. All nutrient concentrations (NO₃-N, NH₄-N, PO₄-P, K, and SO₄-S) showed little variation within streams and across years. Turbidity and TSS exhibited annual variation, but there was no significant increase in the difference between upstream and downstream turbidity and TSS levels. There was a significant decrease in stream canopy cover and increase in the potential fraction of solar radiation reaching the streams in response to the Pine-Bogard Phase 3 and Bailey treatments; however, there was no corresponding increase in stream temperatures. Macroinvertebrate metrics indicated healthy aquatic ecosystem conditions throughout the course of the study. Lastly, the removal of vegetation significantly increased soil moisture in treated stands relative to untreated stands. These results indicate that, with careful planning and implementation of site-specific best management practices, conifer removal to restore aspen stands can be conducted without degrading aquatic ecosystems.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • California
  • Conservation of Natural Resources / methods*
  • Ecosystem*
  • Forestry / methods
  • Forestry / statistics & numerical data*
  • Invertebrates / physiology
  • Phosphates / analysis
  • Populus / growth & development*
  • Rivers*
  • Soil / chemistry
  • Sunlight
  • Temperature
  • Tracheophyta

Substances

  • Phosphates
  • Soil

Grants and funding

This research was funded by the USDA Forest Service, Pacific Southwest Region. The funders did assist in study design, provided field data collection assistance, and input on the methods section during preparation of the manuscript. The funders had no role in data analysis or in the decision to publish.