Potentially toxic element fractionation in technosoils using two sequential extraction schemes

Environ Sci Pollut Res Int. 2014 Apr;21(7):5054-65. doi: 10.1007/s11356-013-2457-4. Epub 2013 Dec 27.

Abstract

This study reports the chemical fractionation of several potentially toxic elements (Zn, Pb, Cd, As, and Sb) in contaminated technosoils of two former smelting and mining areas using two sequential extraction schemes. The extraction schemes used in this study were the Tessier's scheme and a modified BCR scheme. The fractions were rearranged into four equivalent fractions defined as acid soluble, reducible, oxidizable, and residual to compare the results obtained from two sequential extraction schemes. Surface soils were samples from a waste landfill contaminated with Zn, Pb, and Cd located at Mortagne-du-Nord (MDN; North France) and from a settling basin contaminated with PTE such as As, Pb, and Sb located at La Petite Faye (LPF; Limoges, France). The study of the Zn, Pb, Cd, As, and Sb partitioning in the acid soluble, reducible, oxidizable, and residual fractions of the technosoils revealed that Zn, Cd, and Pb were mainly associated with the acid soluble and reducible fractions for MDN site, while As, Sb, and Pb were associated with residual fraction for LPF site. Fractionation results indicate that the percentages of Zn, Pb, Cd, As, and Sb extracted in Fe-Mn oxide bound fraction of Tessier's scheme were always higher than those extracted by modified BCR scheme. This may be attributed to the stronger Tessier's scheme conditions used to extract this fraction. In contrast the percentages of Zn, Pb, Cd, As, and Sb extracted in the organic fraction of the modified BCR scheme were always higher than those of the Tessier's scheme. The order of mobility of PTE was as follows: Cd > Zn > Pb in MDN site and As > Sb > Pb in LPF site. PTE were distributed in all soil fractions, with the most relevant enrichments in extractable and residual fractions. A significant amount of Cd, Pb, and Zn were rather mobile, which suggests that these elements can be readily available to plants and soil organisms.

MeSH terms

  • Chemical Fractionation / methods*
  • Environmental Monitoring
  • France
  • Metals, Heavy / analysis
  • Metals, Heavy / chemistry*
  • Mining
  • Soil / chemistry*
  • Soil Pollutants / analysis
  • Soil Pollutants / chemistry*

Substances

  • Metals, Heavy
  • Soil
  • Soil Pollutants