Sb(2)Se(3) -sensitized inorganic-organic heterojunction solar cells fabricated using a single-source precursor

Angew Chem Int Ed Engl. 2014 Jan 27;53(5):1329-33. doi: 10.1002/anie.201308331. Epub 2013 Dec 11.

Abstract

The photovoltaic performance of Sb2 Se3 -sensitized heterojunction solar cells, which were fabricated by a simple deposition of Sb2 Se3 on mesoporous TiO2 by an approach that features multiple cycles of spin coating with a single-source precursor solution and thermal decomposition, is reported. Poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothioadiazole)] was used as the hole-transporting material. The most efficient cell exhibited a short-circuit current density of 22.3 mA cm(-2) , an open-circuit voltage of 304.5 mV, and a fill factor of 47.2 %, yielding a power conversion efficiency of 3.21 % under standard test conditions (irradiation of 1000 W m(-2) , air mass=1.5 G). The results of this study imply that the developed approach has a high potential as a simple and effective route for the fabrication of efficient and inexpensive solar cells.

Keywords: antimony; mesoporous materials; organic-inorganic hybrid composites; selenium; solar cells.