Polynucleotide phosphorylase is required for Escherichia coli O157:H7 growth above refrigerated temperature

Foodborne Pathog Dis. 2014 Mar;11(3):177-85. doi: 10.1089/fpd.2013.1632. Epub 2013 Dec 14.

Abstract

Background: The growth of Escherichia coli O157:H7 in contaminated dairy and other refrigerated food products due to temperature fluctuation poses a major food safety threat. Effective control or inhibition of E. coli O157:H7 growth depends on our understanding of mechanisms that regulate its growth at low temperature. We hypothesized that polynucleotide phosphorylase (PNPase) plays a critical role in E. coli O157:H7 low-temperature growth.

Methods: To test this hypothesis, the pnp deletion mutant of E. coli O157:H7 was generated using the λ Red recombinase system, and the growth and survival of wild-type and pnp deletion mutant strains were compared at low temperatures.

Results: The growth of pnp deletion mutant strains in Luria Broth (LB) and agar plate at 37°C was similar to their corresponding wild-type strains, while the deletion of pnp impaired E. coli O157:H7 growth in LB at 10°C and 22°C; growth impairment could be partially recovered in the mutant strains by ectopic expression of the pnp complementation plasmid, demonstrating that growth impairment was PNPase-specific. During 14 days of 10°C storage in both LB and milk, wild type strain EDL933 grew and reached >8 log10 colony-forming units per milliliter after 4 days of 10°C storage, while EDL933Δpnp gradually died off with effects more pronounced in milk, which were again mitigated by pnp overexpression. In addition, pnp deletion impaired the motility of E. coli O157:H7 but did not affect its susceptibility to H2O2.

Conclusion: PNPase is required for the growth of E. coli O157:H7 at low temperature; PNPase thus provides a molecular target to control the growth of E. coli O157:H7, which may have important practical applications in dairy and other food industry.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cold Temperature
  • Colony Count, Microbial
  • Escherichia coli O157 / enzymology*
  • Escherichia coli O157 / genetics
  • Escherichia coli O157 / growth & development
  • Escherichia coli O157 / physiology
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism
  • Food Handling
  • Food Microbiology*
  • Foodborne Diseases / microbiology*
  • Gene Expression Regulation, Bacterial
  • Genetic Complementation Test
  • Humans
  • Hydrogen Peroxide / pharmacology
  • Hydrogen-Ion Concentration
  • Milk / microbiology*
  • Movement
  • Polyribonucleotide Nucleotidyltransferase / genetics*
  • Polyribonucleotide Nucleotidyltransferase / metabolism
  • Sequence Deletion

Substances

  • Escherichia coli Proteins
  • Hydrogen Peroxide
  • Polyribonucleotide Nucleotidyltransferase