Discovery of a non-estrogenic irreversible inhibitor of 17β-hydroxysteroid dehydrogenase type 1 from 3-substituted-16β-(m-carbamoylbenzyl)-estradiol derivatives

J Med Chem. 2014 Jan 9;57(1):204-22. doi: 10.1021/jm401639v. Epub 2013 Dec 24.

Abstract

17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) is thought to play a pivotal role in the progression of estrogen-sensitive breast cancer by transforming estrone (E1) into estradiol (E2). We designed three successive series of E2-derivatives at position C3 of the potent inhibitor 16β-(m-carbamoylbenzyl)-E2 to remove its unwanted estrogenic activity. We report the chemical synthesis and characterization of 20 new E2-derivatives, their evaluation as 17β-HSD1 inhibitors, and their proliferative (estrogenic) activity on estrogen-sensitive cells. The structure-activity relationship study provided a new potent and steroidal nonestrogenic inhibitor of 17β-HSD1 named 3-{[(16β,17β)-3-(2-bromoethyl)-17-hydroxyestra-1(10),2,4-trien-16-yl]methyl}benzamide (23b). In fact, this compound inhibited the transformation of E1 into E2 by 17β-HSD1 in T-47D cells (IC50 = 83 nM), did not inhibit 17β-HSD2, 17β-HSD7, 17β-HSD12, and CYP3A4, and did not stimulate the proliferation of estrogen-sensitive MCF-7 cells. We also discussed the results of kinetic and molecular modeling (docking) experiments, suggesting that compound 23b is a competitive and irreversible inhibitor of 17β-HSD1.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 17-Hydroxysteroid Dehydrogenases / antagonists & inhibitors*
  • Cell Proliferation / drug effects
  • Drug Discovery
  • Enzyme Inhibitors / chemical synthesis*
  • Enzyme Inhibitors / pharmacology
  • Estradiol / analogs & derivatives*
  • HEK293 Cells
  • Humans
  • Models, Molecular
  • Structure-Activity Relationship

Substances

  • Enzyme Inhibitors
  • Estradiol
  • 17-Hydroxysteroid Dehydrogenases
  • 3 (or 17)-beta-hydroxysteroid dehydrogenase