Multidimensional open-frameworks: combinations of one-dimensional channels and two-dimensional layers in novel BI/M oxo-chlorides

Inorg Chem. 2014 Jan 6;53(1):528-36. doi: 10.1021/ic402578m. Epub 2013 Dec 12.

Abstract

Here we discuss the synthesis and characterization of three novel bismuth oxo-chlorides ([Bi6Na0.5O7.5][Na0.5Cl3]channel[Cl]layer; [Bi17PbO22][Cl6]channel[Cl3]layer; [Bi9(Pb0.2Mn0.8)O12][Cl3]channel [Cl2]layer) which all show an original multidimensional crystal structure. It is formed of two-dimensional (2D)-layered blocks separated by Cl(-) layers. The blocks are porous with triangular one-dimensional (1D)-Cl(-) channels with various section sizes. This multidimensional feature is unique in the field of Bi and Pb oxo-halides, while so far only 1D or 2D halides units have been reported. The stability of the framework is allowed by Bi(3+)/M(n+) aliovalent substitution to balance charge neutrality. The channel and tunnel walls are formed by edge-sharing O(Bi,M)4 oxocentered tetrahedra, while the triangular tunnel junctions are achieved by O(Bi,M)5 pyramids. The three compounds are rather stable, but only [Bi6Na0.5O7.5][Na0.5Cl3]tunnel[Cl]layer was obtain as a single-phase material so that its photoluminecence properties have been investigated. It shows an unusual red bright luminescence with a maximum at 14150 cm(-1) at low temperatures due to Bi(3+) transitions that are well explained by the Bi-Cl bonding scheme.