Photosynthetic electrogenic events in native membranes ofChloroflexus aurantiacus. Flash-induced charge displacements within the reaction center-cytochromec 554 complex

Photosynth Res. 1994 Jul;41(1):135-43. doi: 10.1007/BF02184153.

Abstract

The thermophilic phototrophChloroflexus aurantiacus possesses a photosynthetic reaction center (RC) containing a pair of menaquinones as primary (QA) and secondary (QB) electron acceptors and a bacteriochlorophyll dimer (P) as a primary donor. A tetraheme cytochromec 554 with two high(H)- and two low(L)-potential hemes operates as an immediate electron donor for P. The following equilibrium Em,7 values were determined by ESR for the hemes in whole membrane preparations: 280 mV (H1), 150 mV (H2), 95 mV (L1) and 0 mV (L2) (Van Vliet et al. (1991) Eur. J. Biochem. 199: 317-323). Partial electrogenic reactions induced by a laser flash inChl. aurantiacus chromatophores adsorbed to a phospholipid-impregnated collodion film were studied electrometrically at pH 8.3. The photoelectric response included a fast phase of ΔΨ generation (τ < 10 ns, phase A). It was ascribed to the charge separation between P(+) and QA (-) as its amplitude decreased both at high and low Eh values (Em,high=360±10 mV, estimated Em,low∼\s-160 mV) in good agreement with Em values for P/P(+) and QA/QA (-) redox couples. A slower kinetic component appeared upon reduction of the cytochromec 554 hemes (phase C). With H1 reduced before the flash the amplitude of phase C was equal to 15-20% of that of phase A and its rise time was 1.2-1.3 μs: we attribute this phase to the electrogenic electron transfer from H1 to P(+). Pre-reduction of H2 decreased the τ value to about 700-800 ns and increased the amplitude of phase C to 30-35% of that of phase A. Pre-reduction of L1 further accelerated phase C (up to τ of 500 ns) and induced a reverse electrogenic phase with τ of 12 μs and amplitude equal to 10% of phase A. Upon pre-reduction of L2 the rise time of phase C was decreased to about 300 ns and its amplitude decreased by 30%. The acceleration in the onset of phase C is explained by the acceleration of the rate-limiting H1 ⇒ P electrogenic reaction after reduction of the other hemes due to their electrostatic influence; a P-H1-(L1-L2)-H2 alignment of redox centers with an approximately rhombic arrangement of the cytochromec 554 hemes is proposed. The observed reverse phase is ascribed to the post-flash charge redistribution between the hemes. Redox titration of the amplitude of phase C yielded the Em,8.3 values of H1, H2 and L2 hemes: 340±10 mV for H1, 160±20 mV for H2 and -40±40 mV for L2.