Use of the HR index to predict maximal oxygen uptake during different exercise protocols

Physiol Rep. 2013 Oct;1(5):e00124. doi: 10.1002/phy2.124. Epub 2013 Oct 23.

Abstract

This study examined the ability of the HRindex model to accurately predict maximal oxygen uptake ([Formula: see text]O2max) across a variety of incremental exercise protocols. Ten men completed five incremental protocols to volitional exhaustion. Protocols included three treadmill (Bruce, UCLA running, Wellness Fitness Initiative [WFI]), one cycle, and one field (shuttle) test. The HRindex prediction equation (METs = 6 × HRindex - 5, where HRindex = HRmax/HRrest) was used to generate estimates of energy expenditure, which were converted to body mass-specific estimates of [Formula: see text]O2max. Estimated [Formula: see text]O2max was compared with measured [Formula: see text]O2max. Across all protocols, the HRindex model significantly underestimated [Formula: see text]O2max by 5.1 mL·kg(-1)·min(-1) (95% CI: -7.4, -2.7) and the standard error of the estimate (SEE) was 6.7 mL·kg(-1)·min(-1). Accuracy of the model was protocol-dependent, with [Formula: see text]O2max significantly underestimated for the Bruce and WFI protocols but not the UCLA, Cycle, or Shuttle protocols. Although no significant differences in [Formula: see text]O2max estimates were identified for these three protocols, predictive accuracy among them was not high, with root mean squared errors and SEEs ranging from 7.6 to 10.3 mL·kg(-1)·min(-1) and from 4.5 to 8.0 mL·kg(-1)·min(-1), respectively. Correlations between measured and predicted [Formula: see text]O2max were between 0.27 and 0.53. Individual prediction errors indicated that prediction accuracy varied considerably within protocols and among participants. In conclusion, across various protocols the HRindex model significantly underestimated [Formula: see text]O2max in a group of aerobically fit young men. Estimates generated using the model did not differ from measured [Formula: see text]O2max for three of the five protocols studied; nevertheless, some individual prediction errors were large. The lack of precision among estimates may limit the utility of the HRindex model; however, further investigation to establish the model's predictive accuracy is warranted.

Keywords: Cardiorespiratory fitness; exercise testing; prediction equation; resting heart rate.