Intracellular calcium channels: inositol-1,4,5-trisphosphate receptors

Eur J Pharmacol. 2014 Sep 15:739:39-48. doi: 10.1016/j.ejphar.2013.10.074. Epub 2013 Dec 1.

Abstract

The inositol-1,4,5-trisphosphate receptors (InsP3Rs) are the major intracellular Ca(2+)-release channels in cells. Activity of InsP3Rs is essential for elementary and global Ca(2+) events in the cell. There are three InsP3Rs isoforms that are present in mammalian cells. In this review we will focus primarily on InsP3R type 1. The InsP3R1 is a predominant isoform in neurons and it is the most extensively studied isoform. Combination of biophysical and structural methods revealed key mechanisms of InsP3R function and modulation. Cell biological and biochemical studies lead to identification of a large number of InsP3R-binding proteins. InsP3Rs are involved in the regulation of numerous physiological processes, including learning and memory, proliferation, differentiation, development and cell death. Malfunction of InsP3R1 play a role in a number of neurodegenerative disorders and other disease states. InsP3Rs represent a potentially valuable drug target for treatment of these disorders and for modulating activity of neurons and other cells. Future studies will provide better understanding of physiological functions of InsP3Rs in health and disease.

Keywords: Ca(2+) signaling; Cell nucleus; Inositol 1,4,5-trisphosphate receptors; Neurodegeneration.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Biophysical Phenomena
  • Humans
  • Inositol 1,4,5-Trisphosphate Receptors / chemistry
  • Inositol 1,4,5-Trisphosphate Receptors / metabolism*
  • Intracellular Space / metabolism*
  • Neurodegenerative Diseases / metabolism

Substances

  • Inositol 1,4,5-Trisphosphate Receptors