The application of high-density genetic maps of rye for the detection of QTLs controlling morphological traits

J Appl Genet. 2014 Feb;55(1):15-26. doi: 10.1007/s13353-013-0186-5. Epub 2013 Dec 3.

Abstract

The development of genetic maps is, nowadays, one of the most intensive research activities of plant geneticists. One of the major goals of genome mapping is the localisation of quantitative trait loci (QTLs). This study was aimed at the identification of QTLs controlling morphological traits of rye and comparison of their localisation on genetic maps constructed with the use of genetically different germplasms. For QTL analyses, two high-density consensus maps of two populations (RIL-S and RIL-M) of recombinant inbred lines (RIL) were applied. Plant height (Ph), length of spikes (Sl) and the number of spikelets per spike (Sps) were studied in both populations. Additionally, the number of kernels per spike under isolation (Kps), the weight of kernels per spike (Kw) and thousand kernel weight (Tkw) were assessed in the RIL-M population. Except for Tkw, the majority of the traits were correlated to each other. The non-parametric Kruskal-Wallis (K-W) test and composite interval mapping (CIM) revealed 18/48 and 24/18 regions of rye chromosomes engaged in the determination of Ph, Sl and Sps in the RIL-S and RIL-M populations, respectively. An additional 18/15 QTLs controlling Kps, Kw and Tkw were detected on a map of the RIL-M population. A numerous group of QTLs detected via CIM remained in agreement with the genomic regions found when the K-W test was applied. Frequently, the intervals indicated by CIM were narrower.

MeSH terms

  • Biomass
  • Chromosome Mapping
  • Chromosomes, Plant / genetics*
  • Genetic Linkage
  • Genotype
  • Inbreeding
  • Phenotype
  • Quantitative Trait Loci / genetics*
  • Secale / genetics*
  • Secale / growth & development