Efficient production of lignocellulolytic enzymes xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by the mutant strain Aspergillus awamori 2B.361 U2/1

Braz J Microbiol. 2013 Oct 30;44(2):569-76. doi: 10.1590/S1517-83822013000200037. eCollection 2013.

Abstract

The production of xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by Aspergillus awamori 2B.361 U2/1, a hyper producer of glucoamylase and pectinase, was evaluated using selected conditions regarding nitrogen nutrition. Submerged cultivations were carried out at 30 °C and 200 rpm in growth media containing 30 g wheat bran/L as main carbon source and either yeast extract, ammonium sulfate, sodium nitrate or urea, as nitrogen sources; in all cases it was used a fixed molar carbon to molar nitrogen concentration of 10.3. The use of poor nitrogen sources favored the accumulation of xylanase, β-xylosidase and ferulic acid esterase to a peak concentrations of 44,880; 640 and 118 U/L, respectively, for sodium nitrate and of 34,580, 685 and 170 U/L, respectively, for urea. However, the highest β-glucosidase accumulation of 10,470 U/L was observed when the rich organic nitrogen source yeast extract was used. The maxima accumulation of filter paper activity, xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by A. awamori 2B.361 U2/1 was compared to that produced by Trichoderma reesei Rut-C30. The level of β-glucosidase was over 17-fold higher for the Aspergillus strain, whereas the levels of xylanase and β-xylosidase were over 2-fold higher. This strain also produced ferulic acid esterase (170 U/L), which was not detected in the T. reesei culture.

Keywords: Aspergillus awamori 2B.361 U2/1; cellulases; hemicellulases; nitrogen nutrition; β-glucosidase.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aspergillus / enzymology*
  • Aspergillus / genetics
  • Aspergillus / growth & development
  • Carbon / metabolism
  • Carboxylic Ester Hydrolases / metabolism*
  • Culture Media / chemistry
  • Nitrogen / metabolism
  • Temperature
  • Xylosidases / metabolism*
  • beta-Glucosidase / metabolism*

Substances

  • Culture Media
  • Carbon
  • Carboxylic Ester Hydrolases
  • feruloyl esterase
  • Xylosidases
  • beta-Glucosidase
  • Nitrogen